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Abstract 
The Risk Amplification Macro Model (RAMM) is a new nonlinear two-country dynamic model 
that captures rare but severe adverse shocks. Tail risk arises from heightened financial stress 
abroad or in Canada that triggers a regime change with a negative feedback loop to the real 
economy. We rely on a combination of sign, zero and elasticity restrictions to identify structural 
shocks. The foreign block (global and US variables) impacts the domestic block (a large number 
of Canadian macrofinancial variables), but not vice-versa. Simulations suggest that tighter 
financial conditions in the United States can spill over to Canada, and a regime change in 
macrofinancial elasticities provides a good replication of economic downturns. The RAMM can 
be used to assess the financial stability implications of both domestic and foreign-originated 
risk scenarios. 

Topics: Financial stability, Business fluctuations and cycles, Econometric and 
statistical methods, Monetary policy transmission 
JEL codes: C51, E37, E44, F44 

Résumé 
Le modèle macroéconomique d’amplification des risques (modèle RAMM) est un nouveau 
modèle dynamique non linéaire à deux pays qui rend compte de chocs négatifs rares, mais 
graves. Les risques extrêmes découlent de tensions financières accrues à l’étranger ou au 
Canada, lesquelles déclenchent un changement de régime ayant un effet de rétroaction négatif 
sur l’économie réelle. Nous comptons sur une combinaison de contraintes de signe, de nullité 
et d’élasticité pour cerner les chocs structurels. Le bloc de variables étrangères (mondiales et 
américaines) a une incidence sur le bloc de variables intérieures (un grand nombre de variables 
macrofinancières canadiennes), mais pas l’inverse. Des simulations donnent à penser qu’un 
resserrement des conditions financières aux États-Unis peut se répercuter sur le Canada, et 
qu’un changement de régime (et donc des « élasticités macrofinancières ») reproduit bien les 
ralentissements économiques. Le modèle RAMM peut être utilisé pour évaluer les implications 
de scénarios de risques d’origine intérieure ou étrangère pour la stabilité financière. 

Sujets : Stabilité financière, Cycles et fluctuations économiques, Méthodes économétriques et 
statistiques, Transmission de la politique monétaire 
Codes JEL : C51, E37, E44, F44 

 

 



1 Introduction

Analyzing the impact of risks on the aggregate macroeconomic and financial variables

is an integral part of assessing the resilience of the financial system. From a financial

stability perspective, quantifying rare and severe but also plausible risks is of the

utmost importance. The repercussions of these tail-risk events are transmitted and

amplified through the financial system. One trigger for amplifications of the impacts

of adverse shocks could be elevated financial stress in the economy. The literature

supports this view by documenting empirical evidence that the economic downturns

associated with high financial stress are more severe (Reinhart and Rogoff, 2009,

2014; Krishnamurthy and Muir, 2020; Adrian, Boyarchenko, and Giannone, 2019).

Therefore, for risk scenario analyses and stress testing, it is important to have a model

that takes risk amplification and financial stress into account.

In this paper, we present the Risk Amplification Macro Model (RAMM), a nonlinear

two-country dynamic model that can generate macrofinancial risk scenarios. As a risk

amplification mechanism, we use a threshold vector autoregressive (TVAR) model

where high financial stress, i.e., systemic financial turmoil spanning several market

segments, could trigger an endogenous regime change. This nonlinearity gives rise to

different relationships between macrofinancial variables based on the financial stress

level. As a result, the model allows for a higher reaction of macroeconomic aggregates

to adverse shocks during high financial stress. To analyze international risk scenarios,

the RAMM entails one TVAR model for foreign variables and another TVAR model

for Canadian variables. Canada is modelled as a small open economy. Overall, the

RAMM is a two-country and two-regime model, where elasticities and correlations

between variables are allowed to differ in low and high financial stress regimes specific

to each country.

Financial stress indices are an integral part of the RAMM’s determination of the

endogenous regime switching. We use the measures of Duprey, Klaus, and Peltonen

(2017) and Duprey (2020) for the foreign and Canadian financial stress indices, respec-
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tively. These studies measure a systemic financial stress that causes financial turmoil

spanning several market segments, asset classes and market prices. Time-varying

correlations provide a system-wide financial stress index reflecting important simulta-

neous movements in the financial sector. Even though Canada’s financial system is

closely linked to that of the United States, the financial stress episodes in each country

do not necessarily coincide. The correlation coefficient between the two indices is

around 0.60. These facts constitute a rationale for having two separate TVAR models

for each block where stress regimes are driven by the country-specific financial stress

index.

Containing 7 foreign and 24 Canadian variables together with regime-specific VAR

coefficients, the RAMM can be considered a medium- to large-scale model. To estimate

such a complex model, we use shrinkage techniques for large Bayesian TVAR models

developed by Bruneau, Chapman, and Tuzcuoglu (forthcoming), who provide an

extension of Bańbura, Giannone, and Reichlin (2010)’s efficient shrinkage estimation

method for large Bayesian VAR models. The structural shock identification, both

in the foreign and domestic blocks, relies generally on theory-driven sign and zero

restrictions. We also discuss how extra restrictions, such as a Taylor rule, can be

incorporated in the shock identification algorithm. Having identified the economically

meaningful shocks, the TVAR models allow us to compute unconditional impulse

responses as well as conditional forecasts of macro aggregates after imposing certain

paths for policy variables. In all these exercises, the benefit of the RAMM over linear

models is its ability to capture amplification effects that cannot be obtained from

average historical relationships, should the financial stress level become high enough.

Finally, we conduct a simple scenario analysis exercise focusing on the 2008–09 global

financial crisis episode. In contrast to a typical scenario analysis where one makes

assumptions on the magnitude and duration of structural shocks, we simply take the

observed foreign data as given. This approach corresponds to a scenario with perfect

foresight of the foreign structural shocks. Then, we compare the RAMM’s predictions

for the Canadian variables when we allow regime switching versus when the model
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is restricted to the low-stress regime. Regime switching provides higher elasticities

in high stress, with gross domestic product (GDP) reacting much more, creating a

negative macro feedback loop with the financial stress. In contrast, not allowing regime

switching, that is, mimicking the use of a single-regime VAR model, would lose the

ability to explain a significant portion of the economic downturn despite having perfect

foresight of the foreign shocks. For instance, at the trough, a single-regime model

would miss an extra 5% drop in annualized real GDP growth, a nearly 1 percentage

point additional increase in the unemployment rate, an extra 30%− 40% decrease in

investment as well as sharp declines in other macrofinancial variables. In other words,

a model without regime switching would have predicted a much milder recession than

it actually was and also than a model with two-regimes could predict. This finding is

also supported by Alessandri and Mumtaz (2017) who show that financial variables

display significant predictive power over the global financial crisis period, particularly

if used within a threshold model.

The RAMM is related to TVAR models in other studies analyzing the role of nonlinear-

ities. For example, Balke (2000) examines the roles of credit conditions as a nonlinear

propagator of shocks, Alessandri and Mumtaz (2019) find that the recessionary effects

of uncertainty shocks are much larger when the economy is in high financial stress,

and Chatterjee, Chiu, Duprey, and Hacıoğlu-Hoke (2022) use the UK financial stress

index as a trigger to highlight the importance of shock amplification due to nonlin-

earities. The RAMM deviates from the models in this literature on various fronts: (i)

it is a two-country model and thus includes four regimes, while other models focus

on a single country with two regimes; (ii) it has a much larger scale—containing 31

variables that span a wider proportion of the economy—than other models; (iii) it

has a richer set of identified shocks, which makes it more policy-relevant.

The RAMM can be utilized for several purposes: to assess the risks of international

or domestic tail events, to conduct counterfactual analysis of different policies, and

to generate macro risk scenarios for stress testing of banks. While the RAMM can

operate as a stand-alone model, it can also be used in conjunction with other mod-
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els. For instance, the RAMM is used as the first module in the Framework for Risk

Identification and Assessment (FRIDA, MacDonald and Traclet (2018)), a suite of

models developed at the Bank of Canada to quantify the impact of financial stability

risks. The risk scenario generated by the RAMM is an input for other models in the

FRIDA to conduct top-down stress testing of financial system participants, such as

households, corporations and banks. In particular, the output of the RAMM—a severe

tail-risk scenario—enters into the Corporate Default Model (CDM, Bruneau, Duprey,

and Hipp (2022)) and the Household Risk Assessment Model (HRAM, Peterson and

Roberts (2016)), which provide scenario-consistent default probabilities for corporate

and household loans, respectively. Finally, the stress scenario and the default probabil-

ities are all fed into banking sector models, such as the Top-Down Solvency Assessment

(TDSA) and MacroFinancial Risk Assessment Framework (MFRAF, Fique (2017))

models, to assess the capital positions and solvency of the banks. The FRIDA can be

illustrated as in Figure 1.

Figure 1: Framework for Risk Identification and Assessment:
An overview

Non-linear macro-financial risk scenario
Risk Amplification Macro Model (RAMM)

Firms’ 
defaults

Corporate Default 
Model (CDM) 

Households' 
defaults

Households Risk 
Assessment Model 

(HRAM)

Impact on banks’ Core Equity Tier 1 (CET1)
Top-Down Solvency Assessment (TDSA) and 

MacroFinancial Risk Assessment Framework (MFRAF)

The plan of the rest of the paper is as follows. The data are discussed in section 2.

The econometric model is introduced in section 3 together with its estimation method.
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The shock identification strategy is explained in section 4. The impulse responses are

presented in section 5. A scenario analysis is illustrated in section 6. Finally, section

7 concludes. The appendix at the end of the paper contains further details on the

data (section A) and some mathematical derivations (section B).

2 The data

The RAMM data set contains 7 foreign and 24 domestic variables at monthly fre-

quency with a sample period of January 1983 to December 2019, i.e., 444 time-series

observations for each variable. We end the dataset before the onset of the COVID-19

pandemic since the inclusion of the observations after 2020 could skew the results.

Omitting the pandemic episode for estimation is an acceptable method because the

primary aim of the RAMM is parameter estimation and structural analysis instead

of forecasting (see Lenza and Primiceri (2020) and Ng (2021) for potential solutions).

The growth rates are calculated as annualized quarter-over-quarter log differences.

We opt not to use month-over-month growth rates since they are too noisy. As well,

we prefer not to use quarterly frequency since we would miss intra-quarter variations

and also end up with very few observations in high-stress regimes. We obtain real

variables by dividing their nominal values by the US and Canadian consumer price

index (CPI) for foreign and domestic variables, respectively. We seasonally adjust the

series if necessary.

Foreign variables For oil prices and non-energy commodity prices, we use the

refiner’s acquisition cost of crude oil and the Fisher commodity price index (all sectors

excluding energy), respectively. For the global term premium variable, we use the

US five-year term premium.1 For US macrofinancial variables, we use US real GDP,

US CPI, the effective federal funds rate (FFR), and the US Financial Stress Index

(USFSI) measured following the method of Duprey et al. (2017). Finally, we take the

growth rates of real commodity prices, real GDP and CPI. We use the levels of the
1Note that we have also calculated a principal component from major economies’ term premia.

However, the resulting factor has a correlation coefficient of 0.97 with the US term premium. Hence,
we treat the US term premium as the global term premium.
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term premium, FFR and USFSI. The stress index is indexed to be between 0 and 100.

Canadian core variables We select the Canadian core variables in accordance with

their US counterparts. Specifically, we use Canadian real GDP, CPI, the overnight

rate and the Canadian Financial Stress Index (CFSI), which is provided by Duprey

(2020) and is also indexed to be between 0 and 100. The housing activity variable

is constructed as follows: we sum residential unit sales and housing starts in all of

Canada, then we divide this sum by the population. The total of residential sales and

new housing captures the total activity in the housing sector, while the division by

the population makes this sum stationary. We also multiply it by 100 so that housing

activity has a standard deviation of a similar magnitude as the other variables. As

a result, the unit of this variable is 100 residential sales or new housing per capita

within a month. Since its unit is complicated to interpret, we construct this variable

as an index reflecting activity in the housing sector. Finally, we use the growth rate

of real GDP and CPI, whereas levels are used for other variables.

Canadian satellite variables We use 19 macrofinancial variables: the unemploy-

ment rate, residential and non-residential investment, household disposable income,

government spending, real imports from and exports to the United States, real house

prices measured as the average residential sales price in Canada, the ratio of pre-

tax net income to total assets of Canadian D-SIBs (domestic systemically important

banks),2 real residential mortgages from Canadian D-SIBs, real consumer loans from

the Canadian D-SIBs, real business credit, consumer and business confidence indices,

five-year Government of Canada bond yields, average five-year mortgage rates, corpo-

rate spreads, the nominal foreign exchange rate (CAD/USD) such that an increase

indicates an appreciation in the Canadian dollar against the US dollar, and the real

Toronto Stock Exchange composite index.

Further details on the data, such as their detailed definition, transformation and
2There are six D-SIBs in Canada: Bank of Montreal, Bank of Nova Scotia, Canadian Imperial

Bank of Commerce, National Bank of Canada, Royal Bank of Canada and Toronto-Dominion Bank.
The D-SIBs constitute a large majority of the banking system. They account for more than 90% of
the total assets and total loans in the banking system.
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sources, can be found in Table 4 in Section A of the appendix.

3 The model and estimation methodology

The RAMM is a two-country and two-regime Threshold Vector Autoregressive (TVAR)

model. All of the VAR parameters, i.e., the autoregressive coefficients and the covari-

ance matrices, are regime-dependent. The regimes are determined by the financial

stress level in each country. Specifically, if the financial stress index for a country

is above (below) a threshold level, which is a parameter to be estimated, then we

say that this country is in a high-(low-)stress regime. In this sense, it is similar to a

Markov-Switching VAR (MSVAR) model. However, one of the main differences arises

from the fact that the regime switching in the TVAR model occurs because of an

observed transition variable, namely the financial stress index, as opposed to a latent

variable as in MSVAR models. Moreover, regime switching in the TVAR model is

endogenous, whereas, in a typical MSVAR model, it occurs exogenously.

3.1 The model

There are two blocks in the RAMM: foreign and Canadian. We model Canada as a

small open economy. Foreign variables can affect the Canadian economy, but not vice

versa. In other words, foreign variables enter the Canadian TVAR model as exogenous

variables, but Canadian variables do not enter the foreign one. For the foreign block,

we use only US variables and commodity prices (oil and non-energy). We do not

include any other country in the foreign block because the United States practically

serves the role of the “rest of the world” for Canada by constituting around 75%

of total Canadian trade. The effects of the European Union and China—Canada’s

other two big trade partners—are mostly captured by commodity prices and the

exchange rate. The exchange rate will be included in the Canadian block since it is

not exogenous with respect to domestic economic policies.

The vector of foreign endogenous variables is denoted by YF
t and is of dimension

(NF × 1), where NF = 7. It contains the growth rate of the real oil price, the growth

rate of the real non-energy commodity price index, the US 5-year term premium, the
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growth rate of US real GDP, the growth rate of US CPI, the FFR and the USFSI.

The piecewise linear TVAR(pF ) equation for the foreign block has pF lags and is given

as follows:

YF
t =



pF∑
i=1

AF
L,iY

F
t−i + eFL,t if USFSIt−1 ≤ γF

pF∑
i=1

AF
H,iY

F
t−i + eFH,t if USFSIt−1 > γF ,

where eFL,t ∼ N (0,ΣF
L) and eFH,t ∼ N (0,ΣF

H). The subscripts L and H denote the low-

and high-stress regimes, respectively, which are determined by the relative levels of

the transition variable at a lag of one month, USFSIt−1, and the threshold parameter,

γF .3 Note that the (NF × NF ) autoregressive coefficient matrices {AF
L,i,A

H
L,i}, for

i = 1, . . . , pF , and the (NF × NF ) covariance matrices {ΣF
L ,Σ

F
H} are all regime-

dependent. A nice feature of the RAMM is that it does not force the coefficients to

differ but lets the data speak in finding the optimal threshold value and differences

in the regime-specific parameters. Another benefit of regime-dependent parameters

is that they partially capture time-varying heteroskedasticity, which is one of the

stylized facts of many macroeconomic and financial variables.

For the Canadian block, the vector of endogenous variables is denoted by YC
t and is of

dimension (NC×1), where NC = 24. Hence, this constitutes a medium- to large-scale

TVAR model.4 The endogenous domestic variables include the unemployment rate;

the growth rates of the residential investment, non-residential investment, household

disposable income, government spending, imports, exports and house price index; the

level of pre-tax net income as a percentage of total assets of the D-SIBs; the growth
3In principle, we can generalize the lag of the transition variable from USFSIt−1 to USFSIt−δ

and estimate the time delay parameter δ in our MCMC sampling. However, it is economically more
reasonable to have δ = 1 since the most recent observation of the USFSI has the most up-to-date
information about the state of the economy. Moreover, estimating another parameter brings about
extra computational and convergence-related costs. Finally, the results are fairly robust to allowing
a free time delay parameter.

4The modelling and estimation approach of the RAMM is flexible enough to include many more
variables in the Canadian satellite block if needed for certain policy analyses.
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rates of residential mortgages, consumer loans and business loans; the levels of the

consumer confidence index, business confidence index, 5-year Government of Canada

bond yields, the 5-year mortgage rate and the corporate spread; the growth rates of

the nominal exchange rate (USD/CAD), stock prices, real GDP, housing activity and

CPI; and the levels of the overnight rate and the Canadian Financial Stress Index. In

addition to the endogenous variables, the Canadian TVAR(pC , qC) equation includes

the contemporaneous and lagged foreign variables as exogenous regressors. As a result,

the model can be written as

YC
t =



pC∑
i=1

AC
L,iY

C
t−i +

qC∑
j=0

BF
L,jY

F
t−j + eCL,t if CFSIt−1 ≤ γC

pC∑
i=1

AC
H,iY

C
t−i +

qC∑
j=0

BF
H,jY

F
t−j + eCH,t if CFSIt−1 > γC ,

where eCL,t ∼ N (0,ΣC
L) and eCH,t ∼ N (0,ΣC

H). As in the foreign block, the low- and

high-stress regimes for Canada are determined by a comparison of the level of the

CFSIt−1 to the threshold parameter γC . Similarly, the (NC × NC) autoregressive

coefficient matrices {AC
L,i,A

H
L,i}, for i = 1, . . . , pC , the (NC×NF ) exogenous variables’

coefficient matrices {BC
L,j,B

H
L,j}, for j = 0, . . . , qC and the (NC × NC) covariance

matrices {ΣC
L ,Σ

C
H} are all allowed to be different across regimes.

So far, we have described the reduced-form TVAR models for each country. But, to

be able to perform any structural analysis, e.g., a policy exercise, we need to identify

underlying structural shocks. Our identification strategy for each block is explained

in detail in section 4.

3.2 The estimation

The RAMM’s modelling and estimation techniques are mainly based on Bruneau,

Chapman, and Tuzcuoglu (forthcoming), which proposes a Bayesian inference method

on a one-country and multiple-regime TVAR model. We estimate the TVAR model

of the foreign and domestic blocks separately. For each block, we use a Gibbs sampler

9



with an adaptive random walk Metropolis-Hastings step. Since this is a large model,

we apply some shrinkage on the parameters to avoid the curse of dimensionality.

In summary, we estimate the threshold parameter via a random walk Metropolis-

Hastings step, and within each regime, we apply Bańbura et al. (2010)’s efficient

Bayesian shrinkage estimation method for large VAR models to estimate the VAR

coefficients.

Note that, once the regime is determined, we are in a linear VAR model environment.

Hence, for the VAR coefficients, we can utilize commonly used shrinkage priors that

provide a closed analytical form for their posteriors so that we can simply use a Gibbs

approach for sampling. In particular, we utilize Bańbura et al. (2010)’s methodology

that relies on Litterman’s priors but increases the shrinkage as the model gets larger.

Specifically, we shrink the diagonal of the first autoregressive coefficient matrices

{AL,1,AH,1} toward the first unconditional autocorrelation coefficient values of each

variable. We shrink the other coefficients toward zero, where the shrinkage gets tighter

for distant lags and for off-diagonals. We also ensure the stability of the VAR since all

the variables are stationary. Finally, inverse Wishart priors are used for the covariance

matrix Σ. Consequently, the VAR parameters can be efficiently sampled from their

posteriors.

For the threshold parameter, Bruneau, Chapman, and Tuzcuoglu (forthcoming) pro-

pose a Beta distribution. Being bounded between 0 and 1, a Beta distribution provides

an advantage in terms of stability compared with commonly used (unbounded) normal

priors. A bounded prior together with a stationary transition variable prevent unde-

sired cases such as the process being stuck in a regime forever. Another advantage of

a Beta prior is that its hyperparameters can be easily set to be in line with our apriori

beliefs. For instance, based on the total duration of recessionary episodes and financial

crises in US and Canadian economic history, it is safe to say that the proportion of

a high-financial-stress regime in either country is likely somewhere around 10%–15%.

Finally, to sample from the posterior of the threshold parameter, we use an adaptive

Metropolis-Hastings step, where the variance of the proposal is adjusted such that
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the acceptance rate is around the asymptotically optimal rate of 23.4% according to

Gelman, Gilks, and Roberts (1997).

Regarding the lag lengths, we try pF = {3, 6, 12} for the foreign model. In terms of

the sampling and convergence characteristics, pF = 12 yields the best results. For

the Canadian model, we try pC = {3, 6, 12} and qC = {0, 1, 2, 3, 4, 5}. The model

with (pC , qC) = (6, 5) not only provides the best sampling and convergence properties

but also better captures transmission mechanism dynamics in the impulse-response

functions (IRFs).5 As a result, the foreign model has 1,248 parameters while the

Canadian one has 7,096.

For each block, we run a total of 200,000 iterations where the first 50,000 draws are

discarded as burn-in and a thinning by a factor of 15 is applied. Eventually, for

each country, we obtain a chain that consists of 10,000 iterations that do not exhibit

any significant autocorrelation. Consequently, the calculated inefficiency factors are

extremely small. We also perform convergence checks on parameter chains according

to the Geweke’s convergence diagnostics (Geweke, 1992). The results indicate that

less than 10% of the parameters do not have convergent chains. These numbers are

acceptable in such a large model with thousands of parameters. In terms of the

computational time, 200,000 MCMC iterations for the foreign and Canadian block

take approximately 1.5 and 9 hours, respectively.

Finally, as an alternative approach to modelling and estimation, it is noteworthy

to compare a sequential estimation of the foreign and Canadian blocks with their

joint estimation with block exogeneity. In the sequential estimation, which is the

RAMM’s current approach, we first estimate the foreign block, then the Canadian

block, and, if desired, we obtain the structural shocks together with their associated

IRFs separately for each block. If we want to obtain the responses of the Canadian
5For instance, when we assign pC = 12, the model becomes vast with around 20,000 parameters.

Hence, we need to apply a high level of shrinkage. But tighter priors push the coefficients of very
distant lags extremely close to 0, rendering them useless in capturing any extra dynamics. In
contrast, if we loosen the priors, then the model becomes less stable and it gets much harder to find
a stationary draw for the autoregressive coefficients. As a result, such practicalities also play a role
in choosing lag lengths in large models.
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variables to foreign shocks, then we take the median IRFs of the foreign blocks and feed

them into the exogenous variables in the Canadian TVAR equations. In contrast, the

joint estimation provides parameter estimates and IRFs of both blocks simultaneously

while imposing a block exogeneity on the autoregressive coefficient matrices as well

as on the structural covariance matrices.

One of the advantages of the sequential estimation is the flexibility of choosing country-

specific priors and hyperparameters—such as the intensity of the shrinkage or lag

lengths. Hence, we have more control over each model relative to a joint estimation.

There are also some computational advantages since estimation of individual models

is faster than estimating a very large joint model. Additionally, it is easier to make

changes to the set of domestic variables and re-estimating the Canadian block indi-

vidually. In contrast, one of the advantages of the joint estimation is that it yields

a more consistent estimation, in particular, for the structural analysis. Moreover, it

provides a correct inference when calculating the transmission of the foreign shocks

to the Canadian economy. However, one disadvantage of this approach could be the

possibly small number of observations within each regime pair. This problem arises in

the joint estimation—as opposed to the sequential one—since one can consider that

there are indeed four regime pairs: low/low, low/high, high/low and high/high. For

instance, when the USFSI is below its threshold and the CFSI is above its threshold,

i.e., when the United States is in low stress and Canada is in high stress, estimation

of the model would rely on only around 5% of the data, i.e., around 22 observations

(discussed in Table 1 below). Hence, the gain in providing a theoretically correct

inference might vanish due to the imprecise estimation of small samples within each

regime pair. Finally, to the best of our knowledge, the literature has not provided a

practical joint estimation methodology with block exogeneity for large TVAR models.

For this, one could potentially merge the block exogeneity method of Zha (1999) with

the efficient large VAR estimation method of Bańbura et al. (2010) and its extension

to TVAR models by Bruneau, Chapman, and Tuzcuoglu (forthcoming); but this is

still an open question in the literature.
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3.3 The financial stress regimes

As a measure of the financial stress prevalent in an economy, we use financial stress

indices based on the methodologies developed by Duprey et al. (2017) and Duprey

(2020). Chart 1 shows the evolution of the US and Canadian financial stress indexes—

scaled to [0, 1]—and highlights some significant events that affected financial stress

in either economy throughout the last 40 years. We also show where the estimated

thresholds stand for each country, indicating cutoff points for a regime switch as

identified by the model.

Chart 1: Financial stress indexes for the United States and Canada

In the RAMM, a two-country and two-regime model, there are four possibilities for the

financial stress regimes, which are presented in Table 1 together with their estimated

proportions in the data.
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Table 1: Estimated stress regime configurations in the RAMM
Canadian stress
Low High

US stress Low 80.1% 7.1%
High 7.3% 5.5%

Note: The table presents the estimated percentage of the time periods when the US and Canadian
economies are in a given regime. The time series span 444 observations.

4 Shock identification strategy

In this section, we discuss our strategy to identify country- and regime-specific struc-

tural shocks. We use combinations of recursive, sign, zero and elasticity restrictions

that vary based on the country and regime. To explain the identification strategy

more clearly, let us abstract from the dependence on the countries or regimes and

consider a generic structural VAR(p) model, which can be written as

BoYt = B1Yt−1 + · · ·+BpYt−p + εt, (1)

where Yt is the vector of N endogenous variables, εt is the vector of structural shocks

with an identity covariance matrix, and {Bo, . . . ,Bp} are the structural coefficient

matrices. We cannot estimate the structural shocks and parameters directly. However,

multiplying both sides of the above equation by B−1
o gives us the following reduced-

form VAR model:

Yt = A1Yt−1 + · · ·+ApYt−p + et, (2)

where {A1, . . . ,Ap} are the reduced-form coefficient matrices and et ∼ (0,Σ) are

the reduced-form errors such that et = B−1
o εt and Σ = B−1

o B−1′
o . The Bayesian

estimation described in section 3.2 provides estimates for Σ and {A1, . . . ,Ap} (for

each country and regime). However, without further restrictions on the model, these

reduced-form estimates are not sufficient to uncover their structural counterparts,

particularly the structural coefficient matrix B−1
o , which is the matrix of interest for

identification.

The Cholesky decomposition, i.e., recursive identification, is one of the most common
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ways to identify B−1
o , where it is assumed to be lower triangular. In this identification

scheme, the ordering of endogenous variables is decisive because it implies that a

variable is not contemporaneously affected by variables that come after.

Another commonly used method is employing sign restrictions, which are theory-

induced and economically meaningful conditions imposed on the relationships between

variables and shocks (Canova and Nicolo, 2002; Uhlig, 2005). Given that there

are infinite ways to factorize Σ = B−1
o B−1′

o , how do we guarantee that B−1
o would

comply with the sign restrictions? To achieve a desired factorization, let us take an

orthonormal matrix Ξ, i.e., ΞΞ′ = IN is the (N ×N) identity matrix, and write

Σ = B−1
o B−1′

o = B−1
o ΞΞ′B−1′

o = (B−1
o Ξ)(B−1

o Ξ)′ = B̃−1
o B̃−1′

o .

Hence, the identification lies in choosing Ξ such that B̃−1
o satisfies the desired sign

restrictions. The way Ξ is generated relies on a QR decomposition (Rubio-Ramirez,

Waggoner, and Zha, 2010), which is explained below.

Sign restrictions can also be combined with zero, elasticity and magnitude restrictions

on certain elements of B̃−1
o . While incorporating elasticity and magnitude restrictions

is trivial—by checking whether B̃−1
o satisfies them—imposing additional zero restric-

tions is rather tricky. For the latter, following Baumeister and Benati (2013), one can

multiply B̃−1
o by appropriate Givens matrices, which are simple rotational matrices

using sine and cosine functions to get the desired elements in B̃−1
o to become zero.6

Overall, a sign restriction algorithm accompanied by zero, elasticity and magnitude

restrictions can be implemented in the following steps. First, if needed, generate the

necessary Givens matrices to rotate any N ×N matrix to have zeros in the desired

elements. The procedure to generate G matrices is explained in detail in section B of

the Appendix. Then, for a given draw of Σ obtained from the Bayesian estimation,

apply the Cholesky decomposition to get Σ = B−1
o B−1′

o . Next,
6Alternatively, one can follow Arias, Rubio-Ramírez, and Waggoner (2018). However, in a

large model like RAMM with several sign and zero restrictions, their algorithm appears to be
computationally difficult due to the involvement of numerical derivatives.
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1. Make a random draw from an N−dimensional standard normal distribution and

take its QR decomposition. In other words, draw Ψ ∼ N (0, IN) and decompose

it such that Ψ = ΞR with ΞΞ′ = IN . Define the candidate structural covariance

matrix as B̃−1
o = B−1

o Ξ.

2. If there are any zero restrictions, apply the Givens matrices. That is, multiply

B̃−1
o by the generated rotation matrices G and update it by B̃−1

o ← B̃−1
o G.

After the rotations, B̃−1
o automatically has zeros in its desired elements.

3. Finally, if the candidate matrix B̃−1
o satisfies the sign and elasticity restrictions

and its elements are within the desired magnitude bounds, then keep this B̃−1
o ;

otherwise, discard it.

4. Repeat the above steps M times, where M is a very large number, save each

B̃−1
o matrix that satisfies the restrictions, and compute the associated IRFs.

As a result of this procedure, at each MCMC iteration, we obtain a collection of

{B̃−1
o (m)}Mm=1 matrices and M IRFs associated with each B̃−1

o (m) matrix. Having

estimated the reduced-form residuals et and M-many draws for B−1
o matrices, one

can easily compute the structural shocks by εt(m) = B̃o(m)et for every m.

There are two things that we adjust in this procedure specific to the RAMM. First,

even though M is chosen to be large, we cease the steps as soon as we obtain one

accepted B̃−1
o for an MCMC iteration. The aim is to have one B̃−1

o for each MCMC

draw so that we do not over-represent certain MCMC draws in the structural analysis.

Second, at each MCMC iteration, we have two covariance matrices corresponding to

different regimes {ΣL,ΣH}. Since one of the purposes of the RAMM is to be able

to conduct policy scenarios with potential regime switching, we want to make sure

that we have an accepted B̃−1
o for each regime. Thus, for a given draw of {ΣL,ΣH},

if we can obtain an accepted B̃−1
o for the low-stress regime, let’s denote it as B̃−1

o,L,

then we increaseM for the high-stress regime to ensure that we can find an accepted

B̃−1
o,H . Eventually, we attain an accepted pair of {B̃−1

o,L, B̃
−1
o,H} for a given MCMC

draw {ΣL,ΣH}. As mentioned above, the RAMM contains 10,000 MCMC draws for
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each country block, and for 8,726 of them, we are able to secure an accepted pair

{B̃−1
o,L, B̃

−1
o,H}. Ultimately, the shock identification strategy delivers us four sets of

different structural shocks corresponding to two blocks and two regimes.

4.1 Shock identification in the foreign block

In this subsection, we present the restrictions imposed on the structural impact matrix

of the foreign block, namely (BF
o )

−1. We identify global shocks by the recursive identi-

fication while US-specific shocks are identified by sign, zero and elasticity restrictions.

The sign and zero restrictions are given in Table 2.

Global shocks While we assume that global shocks can affect US variables contem-

poraneously, US shocks can affect global variables only with a lag. The literature

provides some evidence on commodity prices being predetermined with respect to

the US economy (Kilian, 2009; Elder and Serletis, 2010; Kilian and Vega, 2011). We

treat the US term premium as a global variable since it has a very high correlation

(around 97%) with the principal component obtained from advanced economies’ term

premiums. This means that the US term premium can be viewed as the global term

premium. Then, we impose a recursive identification to separate the shocks to global

and US variables. Among the global variables, we assume that the term premium is

the fastest moving, so we place it last. In addition, since the oil price is generally an

input for the cost of production of non-energy commodities, we place the oil price

first so that its shock can affect non-energy commodity prices contemporaneously.

Alternatively, oil and non-energy commodity price shocks can be identified by sign

restrictions as in Erten and Tuzcuoglu (2018), and US term premium shocks as in

Zivanovic (2019). But this approach would complicate the sign identification algo-

rithm in the foreign block. Thus, we keep the recursive identification approach for

the global variables.

US shocks Identification of US shocks relies on a combination of sign, zero and

elasticity restrictions. In particular, we assume that a US demand shock would increase

economic activity while decreasing the stress level in the economy. Moreover, higher
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income pushes prices up, which, in turn, puts positive pressure on the policy rate. A

negative (unfavourable) supply shock, such as supply chain issues or a reduction in

productivity, has a negative impact on production while increasing financial stress.

Additionally, such a supply shock increases prices, which the monetary authority is

likely to respond to with an increase in the policy rate. A contractionary monetary

policy has a negative effect on the economy by diminishing economic activity and

increasing financial stress, while decreasing inflation. The effects of an unfavourable

stress shock are assumed to be different in low- and high-stress regimes. While a stress

shock is restricted to be contemporaneously muted in the low-stress regime—hence no

effect on the economy on impact—it is assumed to have a negative effect on economic

activity and inflation in the high-stress regime, which a central bank responds to

with expansionary monetary policy. The underlying idea of this differential effect

assumption is that we are interested in stress shocks that are more relevant to the

economy during financial stress as opposed to tranquil times.

With these restrictions, we can identify all of the global shocks as well as the US

supply and monetary policy shocks. Additionally, US demand and stress shocks can

be identified during the low-stress regime thanks to the zero restrictions. However, it is

not possible to separate stress shocks from negative demand shocks in the high-stress

regime. Note that, in Table 2, the sign column of the stress shock is exactly opposite

that of the demand shock in the high-stress regime. Hence, we need more assumptions

to distinguish between an unfavourable demand shock and an unfavourable stress

shock. In general, this is an intricate task since, by definition, stress shocks are

types of negative demand shocks. To achieve identification, we rely on elasticity

restrictions, which are commonly used in the literature (e.g., Kilian and Murphy

(2014)). Specifically, we assume that the US Financial Stress Index responds more to

an unfavourable stress shock than to an unfavourable demand shock. Mathematically,

we impose a restriction on (BF
o )

−1 such that its (7, 4) element, i.e., the response of

the USFSI to a US demand shock, is smaller than its (7, 7) element in absolute value.

This concludes the discussion of all identifying restrictions on the structural impact
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Table 2: Recursive, sign, zero and elasticity restrictions in the foreign block

Oil
shock

Non-
energy
shock

Term
premium
shock

Demand
shock

Supply
shock

Monetary
policy
shock

Stress
shock

Low-stress regime
Oil price x 0 0 0 0 0 0

Non-energy commodity price x x 0 0 0 0 0
Term premium x x x 0 0 0 0

GDP x x x + − − 0
CPI x x x + + − 0
FFR x x x + + + 0

USFSI x x x − + + +

High-stress regime
Oil price x 0 0 0 0 0 0

Non-energy commodity price x x 0 0 0 0 0
Term premium x x x 0 0 0 0

GDP x x x + − − −
CPI x x x + + − −
FFR x x x + + + −

USFSI x x x −∗ + + +∗

Note: The table presents the identification restrictions imposed on the contemporaneous responses
of the variables (rows) to the structural shocks (columns) in each regime. Moreover, signs with
asterisks (∗) indicate that some elasticity restrictions are imposed on these responses. Finally, ‘x’
means that there is no restriction. GDP is gross domestic product; CPI is consumer price index;
FFR is Federal Funds Rate; USFSI is US Financial Stress Index.

matrix (BF
o )

−1. But it is worth analyzing how the recursive ordering (Cholesky

decomposition) and sign restrictions are combined since the linear algebra involved

is not immediately clear. For this, ignoring regime dependence, we can write the

covariance matrix ΣF in four blocks corresponding to the variance of the world block

shocks (ΣW ), variance of the US block shocks (ΣU) and their covariances (ΣW,US)

such that

ΣF =

 ΣW ΣW,US

Σ′
W,US ΣUS

 .

Next, we want to decompose the reduced-form variance and covariance matrix ΣF
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into structural matrices consisting of (BW
o )−1 and (BUS

o )−1, namely the structural

covariance matrices for the world and US blocks, respectively, that are in accord with

our restrictions depicted in Table 2. Specifically, we aim to have a (BF
o )

−1 matrix

such that

(BF
o )

−1 =

(BW
o )−1 0

C (BUS
o )−1

 ,

where C is an unrestricted matrix capturing the contemporaneous response of the US

variables to global shocks. In this setting,

ΣF =
[
(BF

o )
−1
] [

(BF
o )

−1
]′
=

[(BW
o )−1

] [
(BW

o )−1
]′

(BW
o )−1C′

C
[
(BW

o )−1
]′

CC′ +
[
(BUS

o )−1
] [
(BUS

o )−1
]′
 ,

implying that

ΣW =
[
(BW

o )−1
] [
(BW

o )−1
]′
,

ΣW,US = C
[
(BW

o )−1
]′
,

ΣUS = CC′ +
[
(BUS

o )−1
] [
(BUS

o )−1
]′
.

To obtain (BW
o )−1, we simply use a Cholesky decomposition on ΣW resulting in a

lower diagonal (BW
o )−1. To find C, we post-multiply Σ′

W,US by (BW
o )′ such that

Σ′
W,US(B

W
o )′ = C

[
(BW

o )−1
]′
(BW

o )′ = C. Having obtained C, we calculate ΣUS−CC′

and apply our sign, zero and elasticity restrictions algorithm on this matrix to obtain

(BUS
o )−1. Eventually, we acquire a structural covariance matrix, (BF

o )
−1, that satisfies

all of our restrictions and yields ΣF =
[
(BF

o )
−1
] [

(BF
o )

−1
]′.

4.2 Shock identification in the Canadian block

In this subsection, we present the restrictions imposed on the structural impact matrix

of the Canadian block, namely (BC
o )

−1. The Canadian block consists of two sets of

variables: the core variables that are assumed to drive the underlying fundamental

shocks of the economy and the satellite variables that help uncover transmission
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channels and various aspects of the economy. We identify the core structural shocks

by sign, zero and elasticity restrictions, whereas there is no structural identification

for the shocks of the satellite variables. We also assume that the core variables are

predetermined with respect to the satellite ones, which separates the core structural

shocks from the satellite shocks.

Core variables The shock identification for the Canadian core variables is very

similar to that in the US block. In particular, we use the same sign and elasticity

restrictions to identify the demand, supply, monetary policy and stress shocks. The

only difference is the inclusion of a housing demand shock to the system. Note that

house prices contribute significantly to vulnerabilities in the Canadian economy and,

additionally, a house price correction poses a threat to the financial stability (see, e.g.,

Duprey and Roberts (2017); Duprey, Liu, MacDonald, van Oordt, Priazhkina, Shen,

and Slive (2018); and the Bank of Canada’s Financial System Review in June 2018).

Therefore, we separately analyze the effects of housing demand and aggregate demand

shocks in the Canadian block. We distinguish between them by allowing the CFSI to

respond differently. Specifically, we assume that a positive housing demand shock, as

opposed to a regular demand shock, increases the financial stress level—even though

housing demand has a positive impact on the economy. The rationale is that housing

market dynamics have substantial weight in the construction of the CFSI (Duprey,

2020). The disagreeing signs on the responses of the CFSI would disentangle the

housing demand and aggregate demand shocks.

The restrictions on the responses of the housing variable are kept at minimum: a pos-

itive housing demand shock increases housing activity (housing starts and residential

sales per capita) while contractionary monetary policy has a negative effect on it. We

do not restrict the housing variable’s response to an aggregate demand shock since

there are two forces that could drive its response in opposite directions. A demand

shock akin to a discount factor shock would make households want to anticipate

consumption of both goods and housing services. This would increase overall eco-

nomic activity—including housing starts and residential sales. In contrast, a demand
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shock akin to a preference shock that increases the utility derived from goods without

affecting utility from housing services would make households shift their consumption

away from housing and toward goods. This would decrease residential activity and

increase goods production. Similarly, we do not restrict the response of housing to a

stress shock since there are two opposing forces: elevated financial stress could make

economic agents delay their residential activities, but at the same time, households

could see housing as a safe investment amid an economic downturn.

Even though the imposed sign restrictions would identify the housing demand and

aggregate demand shocks, we introduce extra elasticity restrictions to make the dis-

tinction stronger. Specifically, we assume that an aggregate demand shock increases

the overall economic activity more than a housing demand shock, and similarly, a

housing demand shock increases the housing activity more than an aggregate demand

shock. Mathematically, we impose a restriction on (Bcore
o )−1 such that its (1, 1) ele-

ment is larger than (1, 2) and its (2, 2) element is larger than (2, 1) in both regimes.

Note that if the (2, 1) element is negative, then the second restriction would never

bind. All these identification assumptions are presented in Table 3.

Satellite variables Even though the satellite variables are policy-relevant, they

generally are of secondary importance compared with the core variables. Moreover,

since there is a large number of variables in the satellite block, we do not perform

any structural analysis of their shocks. Nevertheless, we apply a simple recursive

identification scheme on the satellite shocks in case we need to use some judgment

based on a specific policy scenario. To be more in line with recursive identification,

we place the slow-moving variables before the fast-moving ones. Specifically, we place

variables from the real side of the economy first—such as unemployment, investment,

household income, imports, exports and credit-related variables. Then we place

confidence indices, interest rates and spreads, and finally the exchange rate and the

stock market index. By no means is this an ideal ordering for the slow- versus

fast-moving variables, and thus, we do not put a lot of emphasis on their IRFs.
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Table 3: Sign, zero and elasticity restrictions in the Canadian core block

Demand Housing Supply Monetary Stress
shock demand shock policy shock

shock shock
Low-stress regime

GDP +∗ +∗ − − 0
Housing activity +∗ − 0

CPI + + − 0
Overnight rate + + + 0

CFSI − + + + +

High-stress regime
GDP +∗ +∗ − − −

Housing activity +∗ −
CPI + + − −

Overnight rate + + + −
CFSI −∗ + + + +∗

Note: The table presents the identification restrictions imposed on the contemporaneous
responses of the variables (rows) to the structural shocks (columns) in each regime. More-
over, signs with asterisks (∗) indicate that some elasticity restrictions are imposed on these
responses. Finally, an empty cell means that there is no restriction. GDP is gross domestic
product; CPI is consumer price index; CFSI is Canadian Financial Stress Index.

Regarding the implementation of a combination of a Cholesky decomposition and sign

identification in the Canadian block, we follow similar steps as in the foreign block.

Ignoring the regime dependence, we write the Canadian covariance matrix ΣC in four

blocks corresponding to the variance of the satellite block “shocks” (Σs), variance of

the core block shocks (Σc) and their covariances (Σs,c) such that

Σ =

 Σs Σs,c

Σ′
s,c Σc

 .

Next, we decompose Σ into structural covariance matrices for the satellite and core

blocks, (Bs
o)

−1 and (Bc
o)

−1 respectively, that are in line with our identifying restrictions.
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Hence, our goal is to have a (BC
o )

−1 matrix such that ΣC =
[
(BC

o )
−1
] [
(BC

o )
−1
]′ and

(BC
o )

−1 =

(Bs
o)

−1 D

0 (Bc
o)

−1

 ,

where D is an unrestricted matrix representing the contemporaneous impact of the

core shocks on the satellite variables. In this setting,

ΣC =
[
(BC

o )
−1
] [

(BC
o )

−1
]′
=

[(Bs
o)

−1] [(Bs
o)

−1]
′
+DD′ D [(Bc

o)
−1]

′

(Bc
o)

−1D′ [(Bc
o)

−1] [(Bc
o)

−1]
′

 ,

implying that

Σs =
[
(Bs

o)
−1
] [
(Bs

o)
−1
]′
+DD′,

Σs,c = D
[
(Bc

o)
−1
]′
,

Σc =
[
(Bc

o)
−1
] [
(Bc

o)
−1
]′
.

First, we obtain (Bc
o)

−1 by applying our sign, zero and elasticity restrictions algorithm

on Σc. Then, to find D, we post-multiply Σs,c by (Bc
o)

′ such that Σs,c(B
c
o)

′ =

D [(Bc
o)

−1]
′
(Bc

o)
′ = D. Afterward, we calculate Σs − DD′ and use a Cholesky

decomposition on this matrix to obtain (Bs
o)

−1. Eventually, we acquire a struc-

tural covariance matrix, (BC
o )

−1, that satisfies all of our restrictions and yields

ΣC =
[
(BC

o )
−1
] [

(BC
o )

−1
]′.

4.3 Potential further restrictions

Note that the estimation period of the RAMM contains the high inflation and high

interest rate episodes of late 1980s and early 1990s. In contrast, the Terms-of-Trade

Economic Model (ToTEM III), the Bank of Canada’s main dynamic stochastic general

equilibrium (DSGE) model for projection and policy analysis (Corrigan, Desgagnés,

Dorich, Lepetyuk, Miyamoto, and Zhang, 2021), uses a sample period that starts

only after 1995. This means that the reaction of output and inflation to monetary
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policy shocks might be larger in the RAMM than in ToTEM III. Thus, we can

introduce further restrictions on certain responses to be more in line with the conduct

of monetary policy or with other policy models used at the Bank of Canada. For

example, restrictions on the contemporaneous coefficients of output and inflation can

be imposed according to an implied Taylor Rule for the policy rate equation. This

would make the monetary policy responses to output and inflation more consistent

with the rules embedded in DSGE models. Similarly (or alternatively), we can

implement magnitude bounds on the responses of the policy rate, output and inflation

so that the RAMM’s key results are aligned with those of ToTEM III (or any other

desired DSGE model). But these magnitude bounds should not be very tight since the

RAMM entails a high-stress regime where assumptions of typical economic theories

might be less relevant. Therefore, these bounds should be used to eliminate extreme

responses and make the results of the RAMM more comparable with those of ToTEM

III.

4.3.1 Potential further restrictions on core responses

For the Taylor Rule–type restrictions, we can follow Arias, Caldara, and Rubio-

Ramirez (2019) and Wolf (2020). Abstracting from countries and regimes, consider

the structural VAR model given in equation (1) with the structural matrix Bo. Note

that the sign, zero and elasticity restrictions have been imposed on the structural

covariance matrix (Bo)
−1. However, the Taylor Rule restriction will be imposed on its

inverse, namely the structural impact matrix Bo. Let’s denote the index of the policy

rate, output growth and the inflation rate as ir, iy and iπ, respectively. Moreover,

let bj,ir denote the transpose of the ithr row of Bj for j = 0, 1, . . . , p. Then, the ithr

equation, i.e., the equation for the policy rate, in the structural VAR (SVAR) can be

written as

b′
o,irYt =

p∑
j=1

b′
j,irYt−j + εt,ir .
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Next, ignoring the lagged and other contemporaneous terms, we can write

rt =
−bo,iriy
bo,irir

yt +
−bo,iriπ
bo,irir

πt + · · ·+
1

bo,irir
εt,ir = ϕyyt + ϕππt + · · ·+ σεt,ir , (3)

where bo,irir , bo,iriy and bo,iriπ are the coefficients of rt, yt and πt obtained from b′
o,irYt.

Equation (3) is the implied Taylor Rule obtained from the SVAR model. While

there are still debates about the optimal magnitudes of the sensitivity coefficients ϕy

and ϕπ, a typical Taylor Rule in DSGE models imposes at least positivity on them:

ϕy > 0 and ϕπ > 0. These restrictions imply that the short-term policy rate would

contemporaneously react positively to changes in output and prices.7

Including a Taylor Rule–type restriction in the shock identification algorithms of

the foreign and Canadian blocks eliminates implied monetary policy rules that are

non-sensible. The resulting IRFs tend to have smaller confidence bands, indicating a

possible elimination of implausible sign draws.

To implement magnitude bounds based on results of ToTEM III, we can impose

another restriction in the shock identification algorithm accordingly. For instance,

ToTEM III predicts that, after a 100 basis point monetary policy shock, output and

year-over-year (core) inflation would decline by 0.35% and 0.10%, respectively, within

a year (Corrigan et al., 2021, p. 31). This means that after identifying structural

shocks and computing the IRFs, we can compute the total change in output and year-

over-year inflation and discard a draw if it predicts extremely different magnitudes

than those of ToTEM III. The lower and upper bounds for accepting a draw can be

arranged such that the median responses are around the desired level.

4.3.2 Potential further restrictions on satellite responses

Given that there are two countries, two regimes, 12 structural shocks and 31 variables,

the RAMM produces around 700 impulse responses. Hence, it would be unreasonable

to expect all these IRFs to align with economic intuition. Most of the counterintuitive

IRFs occur in the high-stress regime, suggesting that there could be some other
7Generally, Taylor Rules in DSGE models include the output gap instead of output growth.
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forces in play—despite controlling for 24 domestic and 7 foreign variables—during

turbulent times. These might include some stimulative government policies, increased

unemployment insurance and eased regulations on financial firms during economic

downturns. These variables are hard to control for. Therefore, we can further restrict

the accepted sign draws to satisfy desired responses of satellite variables after core

structural shocks. But if these restrictions become too restrictive and render shock

identification infeasible, then, in scenario analysis, we can alternatively use either

judgment or some satellite models to obtain some economically meaningful paths for

these variables.

5 Impulse responses

In this section, we present some selected impulse responses of key Canadian variables

to both foreign and domestic shocks. The IRFs can be considered unconditional

responses to unexpected structural shocks. They are derived assuming that the

economy stays within the same regime as it encounters the initial shock. In other

words, regardless of the level of financial stress, we trace the impact of a shock as if

the economy stayed within the same regime. The horizon of the impulse responses is

24 months.

5.1 Impulse responses in the Canadian core block

Chart 2 presents the IRFs within the core block, where the imposed shock identifi-

cation restrictions are given in Table 3. IRFs in the high-stress regime are red while

those in the low-stress regime are blue. First, we feed an unexpected shock that

contemporaneously increases its corresponding own variable by 1% for a demand

shock, 1 unit for a housing demand shock, 1% for a supply shock, 100 basis points

for a monetary policy shock and 10 units for a financial stress shock. Then we trace

out the responses of the five core variables. Even though the IRFs are plotted with

positive shocks, for consistency, we may switch to negative or unfavourable shocks in

our discussions, particularly pertaining to the high-stress regime.

First, let’s discuss the shock amplification mechanism that is present in the regime
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with high financial stress. The negative feedback loop between the financial stress

and real GDP is depicted in the four IRFs at the four corners of Chart 2—responses

of real GDP and CFSI to the demand and stress shocks. A negative demand shock

elevates the CFSI, while an unfavourable financial stress shock decreases output.

Hence, moving from the low- to high-stress regime triggers this negative feedback

loop, where lower output and higher financial stress push the output further down

and the stress higher. Unexpected accommodative monetary policy can be used to

counteract this loop, decreasing financial stress and increasing economic activity.

Chart 2: Impulse responses in the Canadian core block

Note: The shocks are placed in the columns, while the responding variables are in the rows. Solid
lines denote the median impulse responses, while the shaded regions denote the 68% equi-tailed
confidence bands. The blue and red colours represent the low- and high-stress regimes, respectively.
GDP is gross domestic product; CPI is consumer price index; CFSI is Canadian Financial Stress
Index.

Regarding the effectiveness of monetary policy, the median IRFs provide a mixed result:

during financial crises—in contrast to tranquil times—accommodative monetary policy

is more effective at generating inflation but less effective at stimulating economic

activity. However, given wide confidence bands, this difference might be insignificant.
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The responses of housing activity are also noteworthy to discuss. Its negative response

to aggregate demand shocks indicates that the types of demand shocks captured by

the RAMM are more similar to preference shocks than to discount factor shocks. They

decrease residential activity by shifting household consumption away from housing.8

Moreover, this result is stronger in the high-stress regime. In contrast, the response

of housing activity to stress shocks is just the opposite—an unfavourable stress shock

lowers both output and housing activity. Meanwhile, a positive 1-unit housing demand

shock increases the impact on real GDP by 0.8% (1.8%), real housing prices by 4%

(1%) and residential investment by 4.5% (2%) in the low-(high-)stress regime (the last

two IRFs are not reported here). Note that these are quarter-over-quarter annualized

growth rates. For a quantitative comparison with other models, we may need to

convert the responses to either year-over-year growth rates or cumulative effects.9

Overall, we can say that the RAMM captures three types of demand shocks: preference

shocks that shift consumption toward goods and away from housing; housing-specific

demand shocks that stimulate the overall economy; financial stress–related demand

shocks that capture unfavourable aspects of aggregate demand, which contracts both

housing and general economic activity.

5.2 Responses to Canadian financial stress shocks

In this subsection, we focus primarily on financial stress shocks and their impact on

the Canadian economy through various channels. Chart 3 shows the responses of some

selected macrofinancial variables to an unexpected 10-unit increase in the Canadian

Financial Stress Index, which simultaneously contracts real GDP by 0.2% (annualized)

in the high-financial-stress regime. First, let’s analyze responses of certain components

of output. The top row of the figure shows the investment and trade channels through

which a stress shock propagates across the real economy. Facing elevated financial

stress, businesses and households cut back on their investments in both residential and
8This result agrees with the predictions of ToTEM III.
9The direction and magnitudes of these responses to a housing demand shock are generally in

line with the results of Iacoviello and Neri (2010) and Abdallah and Lastrapes (2013).
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non-residential structures. But we see that residential investment is a bigger source

of this transmission than non-residential investment. In terms of the trade channel,

we see that both imports and exports fall in the high-stress regime, while these drops

are more muted in the low-stress regime. The net effect on the trade balance appears

to be positive since imports fall more than exports—due to the depreciation in the

Canadian dollar against the US dollar. The second row of the figure shows the decline

in real house prices, deterioration in consumer and business expectations and a decline

in long-term bond rates. Finally, the last row shows some financial channels where

corporate spreads increase and real stock prices drop. Overall, we can say that an

unfavourable financial stress shock deteriorates the economy in various ways through

both financial and real channels despite an improvement in the trade balance.

Chart 3: Responses to a 10-unit Canadian financial stress shock

Note: This figure shows the responses of 12 macrofinancial variables to a 10-unit financial stress
shock. Solid lines denote the median impulse responses, while the shaded regions denote the 68%

equi-tailed confidence bands. The blue and red colours represent the low- and high-stress regimes,
respectively. DSIBs are domestic systemically important banks.
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5.3 Foreign shocks and their pass-through

In this subsection, we compute the response of the Canadian economy to foreign-

originated shocks. First, we analyze the response of core Canadian variables to all

foreign shocks. Then we focus particularly on the transmission channels of US financial

stress shocks into the Canadian economy.

Chart 4 presents the responses of the five core variables (rows) to seven foreign

structural shocks (columns). As shown in Table 1, there are four possible stress

regime combinations in a two-country and two-regime setting. However, here we plot

only when both countries are in the same regime, that is, low/low and high/high

stress regimes for both the United States and Canada. The structural shocks increase

their own corresponding foreign variables by 10% for the commodity price shocks, 10

basis points for the US term premium, 1% for the US demand and supply shocks,

100 basis points for the US monetary policy shock, and 10 units for the US financial

stress shock.

The IRFs show that both of the commodity price shocks have generally expansionary

effects on the Canadian economy. They boost real GDP and generate inflation that is

particularly persistent in the high-stress regime. Regarding the global term premium

shock, its overall impact on the Canadian economy appears to be positive, but the

results are likely driven by the accommodative response of domestic monetary policy.

The responses to the US demand shock are expansionary despite a contractionary

monetary policy response. Their peak pass-through to Canadian real GDP appears to

be 40% and 100% in the low- and high-stress regime, respectively. This means that a

1% decline in US output creates a much larger deterioration in Canadian output when

both countries are in a financial crisis. In contrast, the pass-trough of the US supply

shocks are at 50%, regardless of the financial regime, but they are much shorter-lived,

possibly thanks to the contractionary monetary policy response to control inflation.

There are two standard international transmission channels of US monetary policy to

the Canadian economy: the US demand channel and exchange rate channel. After
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Chart 4: The impact of foreign shocks on the Canadian core block

Note: The shocks are placed in the columns, while the responding variables are in the rows. Solid
lines denote the median impulse responses, while the shaded regions denote the 68% equi-tailed
confidence bands. The blue and red colours represent the low- and high-stress regimes, respectively,
in both the United States and Canada. GDP is gross domestic product; CPI is consumer price
index; CFSI is Canadian Financial Stress Index.

a contractionary US monetary policy shock, the US demand channel is transmit-

ted through exports and commodity prices and has contractionary effects, while the

exchange rate channel works through the trade balance and import prices and has

expansionary effects. The response of Canadian monetary policy depends on which

channel dominates. The RAMM IRFs indicate that the demand channel is the dom-

inating one such that Canadian real GDP and inflation initially decline with some

rebound effects later on. As an inflation-targeting central bank, the Bank of Canada

cuts back the overnight rate to stimulate the economy but increases the rate later to

control overshooting in inflation and output. Hence, as a result, there is no significant

pass-through from US monetary policy to Canadian—if anything, the pass-through is

in fact negative. These results are in line with the literature and two important policy

models of the Bank of Canada, namely ToTEM III and LENS (Large Empirical and
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Semi-structural model).10 For a better comparison with single-regime models, we can

take a weighted average of the low- and high-stress regime IRFs of the RAMM based

on their observed frequencies (around 86% and 14%). The resulting average IRFs

would be closer to those of the LENS, which is also an empirically driven model, in

contrast to ToTEM III (see Gervais and Gosselin (2014, p. 33–38) for a comparison

of IRFs between ToTEM III and LENS).

Finally, the pass-through of US financial stress shocks to the CFSI is around 50%−60%.

Even though foreign stress shocks increase the stress in Canada, the responses of the

core variables are driven more by the monetary policy reaction. In the low-stress

regime, US financial stress increases inflation but decreases real GDP. Monetary policy

responds with an increase followed by a large decrease in the overnight rate, which

controls inflation while improving economic activity. In the high-stress regime, the

results are opposite: US financial stress decreases inflation but does not affect real

GDP. Monetary policy responds with a drop followed by a rise in the overnight rate,

which generates some inflation and boosts economic activity. In either case, the

impact on housing activity appears to be positive after the initial small negative effect.

As a result, even though one might expect ex ante contractionary responses of the

Canadian economy to unfavourable US financial stress shocks, the ultimate results

are driven by the endogenous response of domestic monetary policy.

Next, let us focus on the responses of some Canadian satellite variables to the US stress

shocks, which are given in Chart 5. Elevated foreign and domestic stress immediately

deteriorate financial conditions and expectations. The effect on financial conditions

can be inferred from an initial drop in asset prices, such as the TSX and house prices,

a decline in the net income of D-SIBs and an increase in corporate spreads. The

effect on expectations can be inferred from a fall in consumer and business confidence

indexes. The worsening of these two aspects yield a contraction in investment.

However, the late responses of these fast-moving variables are driven mostly by the
10See Gervais and Gosselin (2014) for details on the LENS model.
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reaction of domestic monetary policy since their elasticity is higher with respect to

Canadian monetary policy than to foreign stress. We then see an improvement in

all variables, where the rebound effect is much stronger in the high-stress regime

thanks to the initial accommodative monetary policy that counteracts financial stress.

Finally, we see an increase in imports in the high-stress regime due to the strong

appreciation of the Canadian dollar. However, despite the appreciation, the response

of exports is mixed since the US financial stress also contracts foreign demand.

Chart 5: Responses to a 10-unit US financial stress shock

Note: This figure shows the responses of 12 macrofinancial variables to a 10-unit financial stress
shock in the United States. Solid lines denote the median impulse responses, while the shaded
regions denote the 68% equi-tailed confidence bands. The blue and red colours represent the low-
and high-stress regimes, respectively, in both the United States and Canada. DSIBs are domestic
systemically important banks.

6 Scenario analysis

In this section, we illustrate the importance of shock amplification and the prediction

accuracy of the RAMM through a scenario analysis exercise. We can also consider this

a conditional forecasting exercise. For the scenario analysis, in contrast to the IRFs,
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we first need to specify the initial conditions and magnitudes of shocks. In nonlinear

models, they both matter for shock propagation and regime switching. Specifically,

we conduct a scenario analysis by using the conditions of the 2008–09 financial crisis.

We will show that even if we had perfectly accurate knowledge about the shocks, it

would not be enough to capture a significant portion of downside risks. We would

also have to take into account shock amplifications due to regime changes.

This scenario analysis exercise focuses only on the responses of the Canadian block

and covers the episode between January 2008 and December 2009. As the initial

conditions, we use the observed data until December 2007. Then we make an extreme

supposition and assume perfect foresight regarding the foreign shocks. Specifically,

we feed the observed foreign data between January 2008 and December 2009 into the

Canadian block as the exogenous variables. This is in contrast to a typical scenario

analysis where one usually needs to make assumptions on the size and duration of

the scenario-specific shocks. Finally, we trace the responses of the Canadian variables

under two scenarios: (i) we simply obtain the predictions of the RAMM, and (ii) we do

not allow regime switching to occur and use only the low-stress regime coefficients to

obtain the predictions as though the RAMM was a single-regime model. A comparison

between these two scenarios shows the significance of having a shock amplification

mechanism.

Chart 6 shows the paths for all 24 Canadian variables. The first row plots the five

core variables, and the other rows plot the satellite ones. The black lines represent

the observed data between January 2008 and December 2009. The red line represents

the median prediction of the RAMM. We choose the red colour for this because

the Canadian economy moves into a high-stress regime, according to the RAMM’s

predictions, soon after the scenario starts. The blue line represents the median

predictions of the RAMM under the second scenario, that is, when we prevent the

regime switching. We choose the blue colour for this since the model is restricted to

use the low-stress regime parameters regardless of the level of the CFSI.
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Chart 6: Scenario analysis on the Canadian block

Note: This figure shows the responses of 24 Canadian macrofinancial variables under different
scenarios between January 2008 and December 2009. The black line is the path of the observed
data, the red line shows the median prediction of the RAMM, and the blue line is the median
prediction of the RAMM when regime switching is not allowed. GDP is gross domestic product;
CPI is consumer price index; CFSI is Canadian Financial Stress Index; DSIBs are domestic
systemically important banks.

First, the observed data (the black lines) show that the 2008–09 financial crisis was

detrimental for the Canadian economy. For instance, on the macroeconomy side,

annualized real GDP growth declined to as low as −9%, inflation was around −5%,

the unemployment rate increased by almost 3 percentage points, annualized non-

residential and residential investment shrank by almost 70% and 30%, respectively,

and total trade plummeted while the Canadian dollar lost significant value against

the US dollar. Moreover, both short- and long-term interest rates declined between

2 to 4 percentage points. On the financial side, we see a big stock market crash, a 2

percentage point increase in corporate spreads, significant deterioration in confidence

indices, a house price correction of around 20% and sharp decreases in mortgage loans

and business credit. In contrast, the net income of D-SIBs exhibited a robust path,
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reflecting the resilience of the Canadian banking system.

Second, let’s focus on the red lines, i.e., median predictions of the RAMM. The most

striking result is the prediction accuracy of the model: the red and black lines are very

close to each other, even overlapping for most of the time periods and variables. This

could also reflect the fact that, throughout the financial crisis, most of the structural

shocks came from abroad and the Canadian economy simply responded to them as

opposed to generating its own domestic shocks. Remember that, even though this

episode is in the estimation sample, we feed only foreign data into the scenario, not

Canadian data.

There are a few variables and instances where the RAMM’s predictions are not close

to the observed data. One example is the prediction for the overnight rate in the early

onset of the crisis. By mid-2008, there is a small rebound in important macroeconomic

variables such as real GDP, inflation, net trade and even the stock market—possibly

due in part to elevated commodity prices, which are not shown here. Due to all these

temporary positive outlooks, the RAMM suggests holding the policy rate steady until

September 2008—the bankruptcy of Lehman Brothers—followed by a steep decline

in the predicted rates that catch up with the real data. The discrepancy might have

also occurred since the RAMM is a backward-looking model while policy-makers set

the policy rate using a more forward-looking approach. Other variables with poor

predictions include the confidence indexes, which are also forward-looking; some credit

variables, especially in the first nine months of the crisis; and the net income of DSIBs.

Third, let’s focus on the blue lines, i.e., the median predictions of the RAMM when it

is restricted to operate only with the low-stress regime parameters. One striking result

is the poor predictive power of the model, which can be inferred by the difference

between the blue and black lines. The other noticeable result is the difference between

the red and blue lines, which shows us the importance of allowing regime switching,

and thus the significance of taking the shock amplification into account. In terms of

mean squared errors, the red line is around four times closer to the observed data than
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the blue line. Hence, if we had used a single-regime model, we may have missed up to

a 5% further drop in annualized real GDP growth. Moreover, we would have wrongly

predicted a recovery in inflation two quarters earlier than when the recovery actually

happened. Similarly, we would have predicted a nearly 1 percentage point smaller

unemployment rate, 30% − 40% more investment, 30% higher imports, 50% higher

exports, and around 1 percentage point narrower corporate spread. Furthermore, we

would have completely missed the house price correction as well as the sharp declines

in mortgages and business credit. Hence, as a result, a model without regime switching

would have provided a much milder recession than it actually was and also than a

model with two regimes could predict. This comparison could be somewhat unfair to

single-regime models since their predictions would likely be a weighted average of the

blue and red lines. This would make their predictions better than the RAMM that is

restricted to be in the low-stress regime. However, their predictions would be much

closer to the blue ones since the economy is in low stress for around 87% of the entire

time period.

Overall, this scenario analysis exercise emphasizes how crucial it is to allow for shock

amplification and regime switching in financial stability models. Moreover, it shows

that, with single-regime models, one could easily miss the identification of rare but

severe downturns.

7 Conclusion

In this technical report, we present the Risk Amplification Macro Model (RAMM)

that is used for financial stability analyses at the Bank of Canada. The RAMM is a

semi-structural nonlinear model encompassing a large number of foreign and Canadian

variables. It features regime switching between low and high financial stress, which

could generate shock amplification that may not be captured in linear models. Thus,

for financial stability considerations, the RAMM can be used as a stand-alone model

as well as a tool to generate tail-risk scenarios in macro stress testing.

There are two blocks in the model: foreign and Canadian. Canada is modelled as
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a small open economy. Both blocks contain two financial stress regimes that are

determined by the level of their country-specific financial stress index and thresh-

olds. Within each block, the relationships between variables (e.g., coefficients and

elasticities) are allowed to be different across stress regimes. For the structural shock

identification, we employ theory-driven sign, zero and elasticity restrictions. We then

present impulse-response results. A negative feedback loop between financial stress

and real GDP is a particularly important feature of the model: an unfavourable stress

shock reduces output, which in return increases financial stress further. We also ana-

lyze the pass-through of foreign shocks to the Canadian economy. The results indicate

that there is a significant pass-through of US demand, supply and stress shocks.

Finally, a scenario analysis exercise for the 2008–09 financial crisis episode indicates

that not allowing for regime switching would result in an overprediction in annualized

real GDP growth by 5%, an underprediction of the unemployment rate by nearly 1

percentage point, an overprediction of inflation by 30%–40% at annualized rates and a

false early recovery in inflation by 2 quarters. This exercise illustrates the importance

of the risk amplification mechanism for financial stability purposes.
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A Data

Table 4: Foreign and Canadian variables: Definitions and sources

Category/Variable Definition Source

Global and US variables

Oil price US refiner’s acquisition cost of crude oil (including transportation and other fees,
dollars per barrel).

Energy Information
Administration

Non-energy commodity price Fisher commodity price index for Canada, all sectors excluding energy (US dollar
terms, index: 1972 = 100).

Bank of Canada

US term premium US 5-year government bond yields - US 3-month T-Bill yields. Bank of Canada

Real GDP Real gross domestic product (chained (2021) United States dollars). Seasonally
adjusted at annual rates; converted from quarterly to monthly using a cubic
method to match the average of the converted series to the original observations
in each period.

Haver Analytics

CPI Consumer price index for all urban consumers for all items (CPIAUCSL) (index:
1982-84 = 100, s.a.).

FRED

FFR Effective federal funds rate. FRED

US financial stress index See Duprey et al. (2017). Bank of Canada

Continued on next page
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Table 4 – continued from the previous page
Category/Variable Definition Source

Canadian core variables

Real GDP Expenditure-based gross domestic product at market prices (chained 2012 dollars).
Seasonally adjusted at annual rates; converted from quarterly to monthly using
a cubic method to match the average of the converted series to the original
observations in each period.

Statistics Canada

Housing activity The ratio of residential unit sales and Canada Mortgage and Housing Corporation
housing starts series to population estimates in Canada as a percentage.

Statistics Canada

CPI Consumer price index for all items (base year: 2002 = 100, s.a.). Statistics Canada

Overnight rate Overnight money market financing; seven-day call loan. Bank of Canada

Canadian financial stress index See Duprey (2020). Bank of Canada

Canadian satellite variables

Unemployment rate Unemployment rate (both sexes, 15 years and over, s.a.) Statistics Canada

Non-residential investment Expenditure-based gross domestic product for non-residential structures, ma-
chinery and equipment in Canada (chained 2012 dollars). Seasonally adjusted
at annual rates; converted from quarterly to monthly using a linear method to
match the average of the converted series to the original observations in each
period.

Statistics Canada

Residential investment Expenditure-based gross domestic product for residential structures in Canada
(chained 2012 dollars). Seasonally adjusted at annual rates; converted from
quarterly to monthly using a linear method to match the average of the converted
series to the original observations in each period.

Statistics Canada

Household disposable income Household disposable income of Canadian households (chained 2012 dollars).
Seasonally adjusted at annual rates; converted from quarterly to monthly using
a cubic method to match the average of the converted series to the original
observations in each period.

Statistics Canada

Continued on next page
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Table 4 – continued from the previous page
Category/Variable Definition Source

Canadian satellite variables

Government spending Expenditure-based gross domestic product for general governments final consump-
tion expenditure in Canada (chained 2012 dollars). Seasonally adjusted at annual
rates; converted from quarterly to monthly using a linear method to match the
average of the converted series to the original observations in each period.

Statistics Canada

Imports Three-month running average of merchandise imports from the United States to
Canada.

Statistics Canada

Exports Three-month running average of total exports and domestic exports from Canada
to the United States.

Statistics Canada

House prices Average residential sales price in Canada. Haver Analytics

Pre-tax net income The ratio of net income before provision for income taxes to total assets of
Canadian domestic systemically important banks (DSIBs).

OSFI

Residential mortgages Residential mortgages from Canadian DSIBs. It includes insured, uninsured and
reverse mortgages, as well as mortgages less provision for losses and residential
mortgages less allowance for impairment.

OSFI

Consumer loans Consumer loans to individuals for non-business purposes from Canadian DSIBs.
It includes all private loan balances to individuals in agriculture, fishing and
trapping, logging and forestry, mining and quarrying, and manufacturing sectors.

OSFI

Business credit Total credit liabilities and equity securities of private non-financial corporations.
Data after 1990 are from Statistics Canada but those before January 1990 are
extrapolated from values after 1990 by using growth rates of ceased early business
credit data.

Statistics Canada

Consumer confidence index Until April 2020, the series uses the Consumer Confidence Indicator for Canada
(OECD). Data after April 2020 were filled using linear extrapolation with data
from 2015 to 2021 by using the Conference Board of Canada’s consumer confidence
index.

CBOC and
Haver Analytics

Continued on next page
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Table 4 – continued from the previous page
Category/Variable Definition Source

Canadian satellite variables

Business confidence index Index of Business Confidence for Canada (base year: 2014 = 100). CBOC

Five-year government bond
yields

Selected five-year Government of Canada benchmark bond yields. Bank of Canada

Five-year mortgage rates Five-year mortgage rates in Canada. Before the end of August 1998, conventional
five-year mortgage rates were used. Between September 1998 and December 2005,
ING direct five-year fixed mortgage rates were used. From 2005 forward, average
five-year fixed mortgage rates among national mortgage brokers were used.

Bank of Canada

Corporate spread The corporate spread is created by the difference between two series: (1) yield-
to-maturity (YTM) on corporate bonds and (2) yield on government bonds. The
YTM on corporate bonds: before January 1995, average weighted yield on all
mid-term Canadian corporates; after January 1995, average YTM on 3- to 5-year
index and 5- to 7-year index of Canadian corporates. The yield on government
bonds: before October 1980, yield on 3- to 5-year Government of Canada bonds;
after October 1980, yield on 5-year Government of Canada bonds.

Bank of Canada,
Intercontinental Ex-
change, and Bank
of America Merrill
Lynch

Nominal Exchange Rate The foreign exchange rate between CAD and USD, where an increase means
appreciation of CAD.

Bank of Canada

TSX Toronto Stock Exchange composite index (base year: 2000 = 1,000). Statistics Canada
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B Imposing zero restrictions with Givens matrices

Givens matrices provide rotations on a matrix to achieve zero entries in the desired

elements of that matrix. First, let us give a simple example of how Givens matrices

are employed. Let’s say that we want to impose a zero restriction on the (1, 4) element

of a (4 × 4) matrix B. Consider the following system of equations in terms of the

unknown rotation angle ξ:

BG =


b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

b41 b42 b43 b44




cos(ξ) 0 0 − sin(ξ)

0 1 0 0

0 0 1 0

sin(ξ) 0 0 cos(ξ)


Equating the (1, 4) element of this multiplication to 0 and solving for the unknown ξ

yields

−b11 sin(ξ) + b14 cos(ξ) = 0 =⇒ sin(ξ)

cos(ξ)
= tan(ξ) =

b14
b11

=⇒ ξ = arctan

(
b14
b11

)
.

Hence, setting ξ = arctan(b14/b11), generating G as above, and multiplying B by G

will turn the (1, 4) element of B into zero. However, this multiplication does not have

any impact on BB′ since (BG)(BG)′ = BGG′B′ = BB′. In other words, G is an
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orthonormal matrix because

GG′ =


cos(ξ) 0 0 − sin(ξ)

0 1 0 0

0 0 1 0

sin(ξ) 0 0 cos(ξ)




cos(ξ) 0 0 sin(ξ)

0 1 0 0

0 0 1 0

− sin(ξ) 0 0 cos(ξ)



=


cos2(ξ) + sin2(ξ) 0 0 cos(ξ) sin(ξ)− sin(ξ) cos(ξ)

0 1 0 0

0 0 1 0

cos(ξ) sin(ξ)− sin(ξ) cos(ξ) 0 0 cos2(ξ) + sin2(ξ)



=


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 .

What if we want to impose zero restrictions on both b14 and b24? In this case, we need

to generate two Givens matrices, hence, solve two equations in two unknowns. The

matrices G14 and G24, respectively, rotate the B matrix in a way to make the (1, 4)

and (2, 4) elements equal to 0. Note that, the rotations are not independent since the

zero restrictions are on the same column. Therefore, we need to solve for the rotation

angles ξ1 and ξ2 jointly in the following system of equations:

BG14G24 =


b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

b41 b42 b43 b44




cos(ξ1) 0 0 − sin(ξ1)

0 1 0 0

0 0 1 0

sin(ξ1) 0 0 cos(ξ1)




1 0 0 0

0 cos(ξ2) 0 − sin(ξ2)

0 0 1 0

0 sin(ξ2) 0 cos(ξ2)


Equating the (1, 4) and (2, 4) elements of this multiplication to 0 and solving for the
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unknown ξ’s yields

−b12 sin(ξ2) + (−b11 sin(ξ1) + b14 cos(ξ1)) cos(ξ2) = 0

−b22 sin(ξ2) + (−b21 sin(ξ1) + b24 cos(ξ1)) cos(ξ2) = 0.

Solving for sin(ξ2)/ cos(ξ2) yields

sin(ξ2)

cos(ξ2)
=
−b11 sin(ξ1) + b14 cos(ξ1)

b12
=
−b21 sin(ξ1) + b24 cos(ξ1)

b22
.

Note that the first equality will provide a solution for ξ2 in terms of ξ1, while the last

equality will give a solution for ξ1 by rearranging as

sin(ξ1)

cos(ξ1)
= tan(ξ1) =

b22b14 − b12b24
b11b22 − b12b21

=⇒ ξ1 = arctan

(
b22b14 − b12b24
b11b22 − b12b21

)
.

Hence, having solved for ξ1, we can solve for ξ2 as

sin(ξ2)

cos(ξ2)
=
−b11 sin(ξ1) + b14 cos(ξ1)

b12
=⇒ ξ2 = arctan

(
−b11 sin(ξ1) + b14 cos(ξ1)

b12

)
.

Hence, setting ξ1 and ξ2 as above, generating G14 and G24 accordingly, and multiply-

ing B by G14 and G24 will turn the (1, 4) and (2, 4) elements of B into zero.

Finally, we are ready to tackle the zero restrictions we impose on our structural B−1
o

matrices for each block given in Section 4. In particular, we want B−1
o matrices of the

foreign and Canadian blocks during low stress regimes to satisfy

(
BUS

o

)−1
=


x x x 0

x x x 0

x x x 0

x x x x

 and
(
BCA

o

)−1
=



x x x x 0

x x x x 0

x x x x 0

x x x x 0

x x x x x


.

Imposing these zero restrictions would require generating the associated Givens matri-
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ces and solving a system of equations of 3 and 4 unknown angles, respectively, for the

foreign and Canadian blocks. Here, we provide only the solutions for the associated

angles for each country.

Foreign block Generate the three Givens matrices, namely G14, G24 and G34, as


cos(ξ14) 0 0 − sin(ξ14)

0 1 0 0

0 0 1 0

sin(ξ14) 0 0 cos(ξ14)

 ,


1 0 0 0

0 cos(ξ24) 0 − sin(ξ24)

0 0 1 0

0 sin(ξ24) 0 cos(ξ24)

 , and


1 0 0 0

0 1 0 0

0 0 cos(ξ34) − sin(ξ34)

0 0 sin(ξ34) cos(ξ34)

 ,

respectively, where we solve for each angle recursively as

ξ14 = arctan

( b24/b23−b14/b13
b12/b13−b22/b23 −

b34/b33−b14/b13
b12/b13−b32/b33

b21/b23−b11/b13
b12/b13−b22/b23 −

b31/b33−b11/b13
b12/b13−b32/b33

)

ξ24 = arctan

(
(b31/b33 − b11/b13) sin(ξ14)− (b34/b33 − b14/b13) cos(ξ14)

b12/b13 − b32/b33

)

ξ34 = arctan

(
[b14 cos(ξ14)− b11 sin(ξ14)] cos(ξ24)− b12 sin(ξ24)

b13

)
.

Consequently, post-multiplying B−1
o Ξ by the Givens matrices would restrict the de-

sired entries to zero. Specifically, the candidate matrix B̃−1
o = B−1

o ΞG14G24G34 will

have zeros at its (1, 4), (2, 4) and (3, 4) entries, where B−1
o is the Cholesky decompo-

sition of Σ, the matrix Ξ comes from the QR decomposition of a random draw from

a four-dimensional normal distribution. Having satisfied the zero restrictions, we are

ready to check whether the candidate matrix B̃−1
o satisfies the desired sign, elasticity

and magnitude restrictions.

Canadian block Generate the four Givens matrices {G15,G25,G35,G45} with

their associated angles {ξ15, ξ25, ξ35, ξ45} in a similar way as in the foreign block. The
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solution for ξ15 is

ξ15 = arctan

(
A−B

C −D

)
,

where

A =

b15/b14−b35/b34
b33/b34−b13/b14 −

b25/b24−b45/b44
b43/b44−b23/b24

b12/b14−b32/b34
b33/b34−b13/b14 −

b22/b24−b42/b44
b43/b44−b23/b24

, B =

b15/b14−b25/b24
b23/b24−b13/b14 −

b35/b34−b45/b44
b43/b44−b33/b34

b12/b14−b22/b24
b23/b24−b13/b14 −

b32/b34−b42/b44
b43/b44−b33/b34

,

C =

b11/b14−b31/b34
b33/b34−b13/b14 −

b21/b24−b41/b44
b43/b44−b23/b24

b12/b14−b32/b34
b33/b34−b13/b14 −

b22/b24−b42/b44
b43/b44−b23/b24

, D =

b11/b14−b21/b24
b23/b24−b13/b14 −

b31/b34−b41/b44
b43/b44−b33/b34

b12/b14−b22/b24
b23/b24−b13/b14 −

b32/b34−b42/b44
b43/b44−b33/b34

.

Next, the recursive solutions for other angles are

ξ25 = arctan

cos(ξ15)

b15/b14−b25/b24
b23/b24−b13/b14 −

b35/b34−b45/b44
b43/b44−b33/b34

b12/b14−b22/b24
b23/b24−b13/b14 −

b32/b34−b42/b44
b43/b44−b33/b34

− sin(ξ15)

b11/b14−b21/b24
b23/b24−b13/b14 −

b31/b34−b41/b44
b43/b44−b33/b34

b12/b14−b22/b24
b23/b24−b13/b14 −

b32/b34−b42/b44
b43/b44−b33/b34



ξ35 = arctan

(
− cos(ξ25)

(b15/b14 − b25/b24) cos(ξ15)− (b11/b14 − b21/b24) sin(ξ15))

b23/b24 − b13/b14

+sin(ξ25)
[b12/b14 − b22/b24]

b23/b24 − b13/b14

)

ξ45 = arctan

(
− cos(ξ35)

[b12 sin(ξ25) + cos(ξ25) (−b15 cos(ξ15) + b11 sin(ξ15))]

b14

− sin(ξ35)
b13
b14

)
.

48



Consequently, post-multiplying B−1
o Ξ by the Givens matrices would restrict the de-

sired entries to zero. Specifically, the candidate matrix B̃−1
o = B−1

o ΞG15G25G35G45

will have zeros at its (1, 5), (2, 5), (3, 5) and (4, 5) entries, where B−1
o is the Cholesky

decomposition of Σ, the matrix Ξ comes from the QR decomposition of a random

draw from a five-dimensional normal distribution. Having satisfied the zero restric-

tions, we are ready to check whether the candidate matrix B̃−1
o satisfies the desired

sign, elasticity and magnitude restrictions.

The algebra here might seem involved, but one needs to do these calculations only

once. One can either use pen and paper or computer programs such as Mathematica

to solve the linear system of five unknown angles. After obtaining their analytical

solutions and coding them on MATLAB, the computation of Givens matrices and

incorporating them into the sign restriction algorithm take a few milliseconds.
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